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A new finite element method with variable nodes for integrating partial differential 
equations in one space dimension is presented. The method utilizes the approximation power 
of piecewise polynomial functions better than a fixed-node finite element method because it 
distributes grid points in a nonuniform way to suit the peculiarities of the solution at each 
instant of time. The method uses the gradient and curvature of the approximating piecewise 
polynomial itself to determine the position of the nodes rather than physical properties which 
vary from problem to problem. The method has been implemented in a program VFE which 
has the exceptional feature of a variable space step as well as a variable time step. Since the 
method concentrates nodes in regions where small inter-nodal spacing is needed,,it is very 
efficient in integrating equations with shock-like solutions. Finally, the method can be 
extended to systems of partial differential equations in one dimension and to equations in two 
dimensions. G 1985 Academic Press, Inc. 

1. INTRODUCTION 

A number of finite difference and finite element methods which allow the grid 
points to move have been described in the literature, in particular, K. Miller and R. 
Miller [ 11, K. Miller [2], Dwyer, Kee, and Sanders [3], and Davis and .Flaherty [4]. 
A discussion of some of these methods with a list of references appears in Gelinas, 
Doss, and K. Miller [5]. These methods have proven very efficient in integrating 
time-dependent, nonlinear partial differential equations in one dimension with shock- 
like solutions. Indeed, many important equations have solutions which develop 
shocks or moving fronts. Examples are: 

(4 nonlinear diffusion equations, 

(b) Burgers’ equation, 

(c) the quench front equation which models the cooling of a hot nuclear fuel 
rod by water, 

(d) the Stefan equation for a melting ice front, 

(e) the Hodgkin-Huxley equations for the propagation of electrochemical 
impulses down a nerve fiber, 

(f) the equations of gas dynamics in a shock tube, 
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(g) the equations of combustion kinetics in a shock tube, 

(h) the shallow water wave equations. 

This paper describes a new finite element method with variable nodes and presents 
the results of the application of a computer program written to implement the method 
to the first three examples. The method consists of a modification of the standard 
finite element method which uses piecewise polynomial functions and equally spaced 
grid points. 

A finite element method with equally spaced nodes does not take full advantage of 
the approximation power of piecewise polynomial functions. This power appears to 
lie in the possibility of distributing the grid points in a nonuniform way to suit the 
peculiarities of the function being approximated [6]; that is, approximation of a 
function 4 by a piecewise polynomial function of a specific order with a specific 
number of equally spaced grid points can be greatly improved by redistributing the 
grid points to suit the peculiarities of the function ( [7, p. 1801. However, the 
solutions to initial-boundary value problems for partial differential equations change 
with time. Consequently, to utilize better the power of piecewise polynomial 
functions, a finite element method must place grid points in a nonunilirm way to suit 
the peculiarities of the solution at each instant of time. In particular, the position of 
the grid points must be a function of time. 

Since it is difficult to obtain the best possible approximation for a given number of 
grid points [6], the new method was devised with the objective of obtaining a good 
and inexpensive piecewise polynomial approximation at each instant of time rather 
than the best possible one. Hence, it gives a piecewise polynomial approximation at 
each instant of time with a nonuniform grid and few grid points although the approx- 
imation may not be the best possible one for that number of nodes. 

Criteria for the distribution of grid points to obtain this type of approximation to 
the solution of an initial-boundary value problem have been derived in this paper for 
continuous piecewise linear functions although similar criteria for higher order 
piecewise polynomial functions can also be derived. Since this finite element method 
will use these criteria to adjust the nodes automatically, it will utilize the approx- 
imation power of piecewise polynomial functions better than a fixed-node finite 
element method. 

2. THE STANDARD FINITE ELEMENT METHOD 

This section describes the modifications of the standard finite element method 
which are a consequence of allowing the grid points to be a function of time. The 
standard finite element, or Galerkin, method approximates the solution of a partial 
differential equation with piecewise polynomial functions and fixed grid points. The 
partial differential equation can be considered as an ordinary differential equation 

2.i = L(u), t>o 
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where L is a differential operator on the Hilbert space L ’ [0, 1 ] and [0, 1 ] is the space 
interval. The approximations lie in a finite dimensional space with basis functions a’ 
for i = l,...,N, where N is the number of nodes. Since continuous piecewise linear 
approximations will be used in this method, the oi are defined as hat functions, i.e., 

Cx - si- I)/tsi - si- I> if Si-i <X<Si 

Csi+* -xY(si+l -si> if Si < X ( Si+ 1 

0 otherwise 

for i = l,..., N. Here s i ,..., s, are the nodes with sr = 0 and s,,, = 1. The piecewise 
linear function u can be written 

u(t) = 2 c-+(t) d. 
i=l 

The coefficients al(t) are the values u(t, si) of the function at the nodes. If the nodes 
s,,..., S, were fixed in time, the derivative of v with respect to t would be 

N 

C(f) = c c$a’. 

i=l 

Since the nodes si can move with time, 

The pi are defined as 

-mi- 1(X - Si- I)/(si - si- 1) 

-mi(si+ 1 - xY(si+ 1 - si) 

0 

for i = 1 ,..., N. The slopes mi of v are 

if St-1 < X < Si 

if Si <X<Si+l 

otherwise 

mi = tai+ 1 - aiY(si+ 1 - si) 

for i = I,..., N - 1. 
To approximate the solution of the initial-boundary value problem, we derive N 

ordinary differential equations. The L*-norm of the residual of the partial differential 
equation, defined with the piecewise linear approximation u, 

II c - L(~>ll* 
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is formally minimized with respect to the di by requiring that the ordinary differential 
equations 

3 11 ti - L(U)ll:/aCii = 0 

hold for i = l,..., N. These equations are the same as those derived by the Galerkin 
method and can be represented as 

N 

-i- dj 
,z 

a’a’dx+ 2 ~j~‘/3%zidx-j’lL(v)aidx=0 
j=l 0 0 

for i = l,..., N. However, there are 2N unknowns 

aI ,..., UN, s 1 >“‘, s, 

and only N equations. Hence, an extra N equations must be derived to distribute the 
grid points. 

In [ 1 ] the extra N equations are obtained by formally minimizing 

with respect to ii by requiring that the ordinary differential equations 

hold for i = l,..., N. (These equations are modified in [ 1 ] to prevent them from 
becoming degenerate.) In this paper, on the other hand, explicit criteria for 
distributing the nodes are derived in the form of algebraic equations. The extra N 
ordinary differential equations are obtained by differentiating the algebraic equations 
with respect to time. 

3. CRITERIA FOR DISTRIBUTING NODES 

The criteria use the gradient and curvature to distribute the nodes. Similar criteria 
have appeared in the literature of approximation theory [6, 71 and even in an 
adaptive method for solving time-dependent partial differential equations [4]. We use 
the gradient as the primary criterion to distribute nodes, which is a fundamental 
difference of our method from [4], even though the curvature criterion would 
distribute them more efficiently with respect to the (spatial) accuracy of the piecewise 
linear approximation. Our reason is that nodes need to be concentrated in regions 
where the solution of the partial differential equation has a steep gradient, because the 
values ai of the piecewise linear approximation may change rapidly with respect to 
time in those regions. We formulate the criteria as N algebraic equations where N is 
the number of grid points and differentiate them with respect to time to obtain N 
ordinary differential equations. We solve simultaneously these N equations together 
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with the N finite element Eqs. (0); hence, we solve for the values a, ,..., Q, of the 
piecewise linear approximation simultaneously with the node positions s, ,..., sN, 
which is another fundamental difference of our method from that in [4]. The main 
reason for employing a simultaneous solution is that we want to concentrate nodes 
where the shock is at the current time step rather than use nodes concentrated where 
the shock was at the previous time step. 

We will discuss first the cirterion which uses the gradient of a function Q and 
secondly the criterion which uses the curvature. Here 4 is the solution of a partial 
differential equation at a specific instant of time. 

The first criterion consists of the equations 

6 i+1- si>q (JST+’ i$‘(x)Ip dx) I” = constant 

for i= 1 ,..., N - 1 with s1 = 0 and s, = 1 and arbitrary positive rational numbers p 
and q. If the function $ were known explicitly, we would choose the constant to be 

This criterion concentrates nodes where the gradient of 0 is large and places few 
nodes where the gradient is small. But 4 is not known explicitly, so an implicit 
approximation is made using only the ordered pairs (s,, a,) ,..., (s,,,., 0,;) where 
a, = #(s,) for i = l,..., N and a discrete analog for the criterion. We choose q = l/2 for 
simplicity and p = 2 for a reason that will be made clear. If a piecewise linear 
approximation of 4 is used, then the discrete analog of the criterion is 

1 m,l (si+ , - si) = constant 

for i = l,..., N - 1 with sr = 0 and sN = 1 and slopes m ,,..., mH-, of the piecewise 
linear approximation. The criterion is reformulated by defining1;: to be 

J;.(Si~Si+I)=lm,I (si+~-si) 

for i= 1 ,..., N - 1 and requiring that 

J;:=fi+, 

for i = l,..., N - 2. Since 

Imil Csi+l -si>=I#(si+I)-4(sIl 

the discrete criterion requires that 

I$(si+,)-$(si>l=I~(si~*)-9(si~ I)1 

for i = 1 ,..., N - 2. That is, the nodes are distributed on the interval IO, 1 ] in such a 
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way that the differences in the values of d evaluated at the endpoints of the intervals 
[si, si+ 1] for i = l,..., N - 1 are the same in absolute value. 

This criterion for the placement of nodal points is adequate for the approximation 
of an arbitrary function but not for the finite element approximation of the solution of 
an initial-boundary value problem. Experience with finite element and finite difference 
approximations indicate that a few grid points are needed where the solution has no 
gradient. Hence, a constant E, is inserted into the original formula, specifically, 

(sit I - sJ4 ( jsi+’ (I$‘(x)]~ + ei)) I” = constant 
si 

for i= 1 ,..., N - 1. This has the discrete analog for q = l/2 and p = 2 

.Usi, Si+ 1) = dTG Csi+ 1 - si> 

for i = l,..., N - 1 and 

for i = 1 ,..., N - 2. The value of p was chosen to be 2 rather than 1 to make h 
differentiable with respect to m, when mi vanishes. Although 14’(x)/ may be very 
small in some subinterval of [0, 11, the constant E, can be made large enough relative 
to the maximum value of Id’(x)1 on [0, 1 ] to insure that some nodes are placed in the 
subinterval. As E, is made larger, the distribution of the grid points will depend less 
on the gradient of 4 and, consequently, will become more uniform. Indeed, if E, is 
made large enough, the grid points will be nearly equally spaced. 

Experience with finite element and finite difference approximations also indicates 
that nodes are needed where the second derivative of the solution with respect to the 
space variable is large. That is, nodes must be placed where the curvature of the 
solution is large. In particular, if the solution is a shock wave, nodes must be placed 
at the front and back of the wave. The criterion we would like to use is 

6. 1+1- si)4 (j”+’ I$“(x)IP c&) I” = constant 
si 

for i= 1 ,..., N - 1 with s, = 0 and s, = 1 and arbitrary positive rational numbers p 
and q. Since a piecewise linear approximation is to be used, it is difftcult to formulate 
a discrete analog of this criterion. Instead, we adopt the criterion 

Bl(si+l -si-l)q (if”,’ I$“(X)IP dx) 1/P 

I 

+ B,(si+ z - si)q ( jsi+* I#“(x)Ip dx) “’ = constant 
Si 

for i= 1 ,..., N - 1 with s, = 0 and s,,, = 1 and arbitrary positive rational numbers p 
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and q. For i= 1, B, is zero and for i= N- 1, B, is zero. Otherwise, B, and B, are 
positive real constants. The discrete analog of this criterion for q = 3/2 and p = 2 is 

B, dh - WA’ + ~2 (si+ 1 - st-,) + B, \/(mi+, - mi)’ + s2 (s~+~ - si) = constant 

for i= 1 ,..., N - 1. Here E, is a positive real constant which prevents the derivatives 
with respect to m,-,, mi, and mi+, of the discrete analog from being infinite when 
4-l =mi or mi=mi+,. The value of s2 will be small relative to the maximum of 
]d”(x)] for all x in [0, 11. To see how the discrete criterion is an analog of the 
original, we note that 

(mi-mi-,)/(Si+l-Si-l) 

approximates #“(si) and that 

d/(h-mi-J@i+, -si-~>)2(Si+i - si-l) tSi+* - si-1)3’2 

= d/(m, - mi- I)’ (Si+ 1 - St- 1). 

The right-hand side of this equation is the term multiplied by B, in the discrete 
analog .if s2 is set to zero. Other equations used to place nodes in regions where the 
curvature of 4 is large are described in Section 11. 

To derive one equation for each of the node positions si for i = I,..., N, we combine 
the criterion for the gradient with that for the curvature to obtain one criterion for the 
placement of the nodes 

jXsi- 19si,si+17si+2) 

=~~(Si+l-Si)+B,~(mi-mi-1)‘+&2(Si+,-Si-,) 

+B2 dh+, - mi)’ + s2 (si+ 2 - si) = constant (1) 

for i= l,..., N - 1. Here B, is zero if i = 1 and B, is zero if i = N - 1. The criterion is 
reformulated by using theJ; to define the functions gi 

Sl if i=l 

g&1 ,***, TV) = h-1 -fi 

I 

if 2&i<N-1 

sN- 1 if i=N. 

Equating each gi to zero gives N algebraic equations 

(2) 

giCs 1,“‘, SN) = 0, i = I,..., N 

which determine the distribution of the grid points. Equations (2) require each 
interval [s~-~, si] to have the same total amount of gradient and curvature. If an 
interval [si- 1, si] has more gradient than other intervals, it must be smaller. If an 
interval [si- 1, si+ i] h as more curvature than other intervals, it too must be smaller. 
The equations g, = 0 and g, = 0 define the boundary points. 
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4. THE METHOD AS A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS 

The algebraic Eqs. (2), g, = 0 for i = l,..., N, which determine the position of the 
nodes s i ,..., s, can now be used to define N ordinary differential equations. Differen- 
tiating each of the functions gi with respect to time gives 

gi = 0, i = l,..., N. 

These equations are presented in Appendix I. Adding these N equations to the N 
equations derived from the Galerkin or finite element approximation of the original 
partial differential equation gives 2N ordinary differential equations in all for the 2N 
unknowns a, ,..., aN, s, ,..., s,. The entire system of equations has the form 

Am, = G(Y) 

with y = (a,, s,, a2, s2 ,..., aN, s,). The mass matrix A(y) has the form shown in 
Appendix II. 

To complete the method requires an ordinary differential equation solver to 
integrate this system of 2N equations. However, the equations will be stiff [8] if the 
variables a, and si change rapidly. This could occur, for example, when the solution 
of the partial differential equations contains a shock wave. Hence, the 
Gear-Hindmarsh method is used to integrate the system of equations since it employs 
Gear’s implicit methods [9-l 1 ] for stiff equations with a variable time step and a 
Newton method. The variable node finite element method for integrating partial 
differential equations is thus complete. It has the exceptional feature that it utilizes a 
variable time step provided by the Gear-Hindmarsh method and a variable space 
step provided by Eqs. (2). 

5. ADVANTAGES OF THE METHOD 

The method takes advantage of the power of piecewise polynomial functions by 
distributing the grid points in a nonuniform way to suit the peculiarities of the 
solution at each instant of time. As a consequence, the method requires many fewer 
grid points than finite element and finite difference methods with fixed grids. 
Furthermore, the method allows a larger time step because its ordinary differential 
equations are smoother or less stiff. These advantages result in the use of less 
computer storage as well as less CPU time because many fewer computations are 
needed. 

The ordinary differential equations of the method are smoother because they allow 
nodes in a steep wave front or shock to move with it. The smoothest equations and 
the largest time step would result if the nodes within the shock were allowed to move 
with the same speed as the shock. But, this cannot occur. Since the constant E, in 
Eqs. (2) places nodes in regions where the slope ]mi] is small, nodes are forced 
through the wave front as shown in Fig. 1. This can be explained as follows. Since the 
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5- 

t = 0.008 

0 2 4 6 8 

t = 0.002 

I I ' I 1 I ' 
0 2 4 8 8 

t = 0.016 

FIG. 1. Solution of nonlinear parabolic equation u, = (u5),, by VFE with ~(0, t) = 6, ~(10, 1) = 0, 
32 nodes, e1 = 0.01, Ed = 10e6, and B, = B, = 0.025. 

gradient of the solution in the shock is constant and equal to zero outside of it, 
Eqs. (2) allow fewer and fewer nodes to remain in the interval between the front of 
the shock and the right boundary point as the wave moves to the right. Likewise, 
more and more nodes must move into the region between the left boundary point and 
the back of the shock. Hence, nodes do not move with the same speed as the shock 
but move slowly through it. Nevertheless, the ordinary differential equations of the 
method will still be smoother than those of the fixed node methods because the 
difference between the speed of the nodes in the shock and the speed of the shock 
itself will be small. That is, the value ai of the piecewise linear approximation at the 
node si which lies in the shock will change less rapidly than in the fixed node method 
because the difference in the speed of si and the speed of the shock is small. 
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6. INITIAL VALUES FOR THE NODES 

A difficult problem remains. Since the grid points s, ,..., sN are functions of time 
and are dependent variables in the ordinary differential equations of the method, their 
initial values must be computed. That is, if this method is applied to an initial- 
boundary value problem with initial condition u(x, 0), then we must compute the grid 
points for a piecewise linear interpolation of u(x, 0) as determined by Eqs. (2). 
Specifically, the system of nonlinear algebraic equations 

gi(“(sl 9 O)Y***, u(S,$T, O), s, v..Y SN) = O, i = l,..., N 

must be solved for s, ,..., s,. Although the standard methods for solving nonlinear 
equations are inefficient when applied to these equations, we have devised a method 
which solves the system very quickly so that no significant amount of computing time 
is used. This method is described in Appendix III. 

7. IMPLEMENTING PROGRAM 

A computer program has been written which uses this new finite element method. 
It is called VFE for variable node finite element method. A subroutine in VFE uses 
the method described in Appendix III to solve Eqs. (2) for the initial values of the 
nodes s, ,..., s,. It is called GIV for g-function initial value solver. A second program 
was written which uses a fixed node finite element method and is called FFE for fixed 
node finite element method. Both the VFE and the FFE programs use the 
Gear-Hindmarsh program for stiff equations with Newton’s method. The VFE 
program has been applied to three equations: a nonlinear parabolic equation, Burgers’ 
equation and the equation for the quench front problem. The program FFE has been 
used to compare the output of a fixed node method with that of the new method. All 
computer runs were done on a UNIVAC 1100 with double precision and 18 digits of 
accuracy. 

Since the program VFE requires values for the parameters in Eqs. (2), specifically, 
E, , s2, B, , B,, and the number of nodes N, a method is needed to estimate values for 
these parameters. We do not, however, have a numerical method but only a heuristic 
procedure for estimating acceptable values. In addition to heuristics the procedure 
uses the program GIV and requires estimates of max 14’ 1 and min ] 4’ 1. Here 4 detined 
on the interval [0, l] is the exact solution of the initial-boundary value problem at 
time zero or an estimate of the solution at some later time, and the maximum and 
minimum are for all x between zero and one. 

Since the method is designed to place many nodes where they are needed most 
rather than to determine the best possible location for the nodes, the values given to 
the parameters should not be critical. More specifically, the accuracy and time step of 
VFE should not be sensitive to changes in the parameters. Since only crude estimates 
are needed, the procedure can use heuristics to estimate values for the parameters. In 
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addition, we assume that the gradient will be the primary criterion for determining the 
position of nodes for the reason discussed in Section 3 and because of exprience 
which indicates that in all but one case it provides sufficient nodes for regions of 
large curvature. The exceptional case occurs when a steep wave meets a region of 
small gradient. Hence, weights B,, B, will be given values no larger than needed for 
this situation. 

The first step in the procedure is to select a value for ci. We assume that E, is 
much smaller than E, and that the piecewise linear approximation of d will have 
slopes m, such that 

Im,,l= max lmil for 1 ,<i<N- 1. 

( mi, ( approximates 

n-lax I i’(x)1 for x in [0, 1 ] 

and 

mice 1 = m,, = m,,+, . 

Also, we assume that 

Imi,,l = min ]mi] for 1 <i<N-- 1. 

] mi,, ( approximates 

Inin I #‘(x>l for x in [0, 1 ] 

and 

mitt- 1 = m,,, = m,,,+, . 

Given these assumption the B terms in A, and h,, defined by Eqs. (1) will be very 
small. Since 

f;:$ =A,, 

by Eqs. (2), we obtain 

6 = hi,,/dsi, g dmax (4’ 1 + E, /dm 

where the maximum and minimum are taken on the interval [0, 11. Since experience 
indicates that values of 6 in the interval 

work well, we select 6 in this interval and compute E, from the equation. We now 
select a specific value for .s2 much smaller than E, . In the test problems we selected s2 
to be 10-6. 
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We now replace B, and B, by a single parameter B and estimate a value for it. (In 
VFE B, equals B2.) The three factors determining the value of B are the accuracy of 
the piecewise linear approximation and the stability and stiffness of the system of 2N 
ordinary differential equations. Larger values of B give more weight to the curvature 
criterion in Eqs. (2) and, consequently, distribute nodes so that the piecewise linear 
function will approximate better sharp edges which occur where a steep gradient 
region of 4 adjoins a region of little or no gradient. However, from experience larger 
values of B will make the 2N system of ordinary differential equations more stiff. On 
the other hand, if B is zero, the equations may become unstable; in Fig. 7, for 
example, the node si may jump ahead of si+ i, i.e., 

Si+l < Si. 

From experience values of B in the interval 

O.O<B<O.l 

work well. 
We select a value of B somewhat smaller than 0.1, namely, 0.025 and apply GIV 

to 4 using the values for E, and s2 already chosen. Since a value for s2 is needed in 
the application of GIV to 4, we select an s2 such that the piecewise linear approx- 
imation has the desired accuracy in the interval [s,, sZ]. If the piecewise linear 
approximation computed by GIV is not accurate enough, we increase the number of 
nodes by decreasing the value of s2 used in GIV and apply GIV again. If the 
piecewise linear approximation is sufficiently accurate, we proceed to check the 
values of 

ASi, Asi+l, Asi+ 

where a steep gradient region of Q meets a region where 4 has little or no gradient as 
shown in Fig. 7. From experience, if the values of Asi, Asi+, , and Asit satisfy 

ASi+ 1 = As,+,(l - r) + Asiv for 0.1 GrG0.9 

then the system of ordinary differential equations of the method should be stable and 
not too stiff for the value of B used. If Asi+ L is too small, then decrease B and apply 
GIV again. If Asi+ 1 is too large, increase the number of nodes rather than increase B 
and apply GIV again. In all the test problems B was given the value 0.029 

8. A NONLINEAR PARABOLIC EQUATION 

The new method was first applied to the nonlinear parabolic equation 
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on the interval 0 Q x ,< 10. This equation develops a steep wave front or shock. A 
finite difference scheme for integrating the equation is described by Richtmyer and 
Morton [ 121. The VFE program with 32 grid points was applied to the problem with 
initial condition 

24(x, 0) = 
I 

-x+6 if O&x,<5 
-1/5(x - 5) + 1 if 5<x<lO 

and Dirichlet boundary conditions ~(0, t) = 6 and ~(10, t) = 0. In Eqs. (2) the 
parameter E, was set to 0.01, s2 to 10e6, and B, and B, to 0.025. A plot of the 
output of the VFE program is shown in Fig. 1. The solution quickly develops a steep 
wave which moves to the right. As expected, the nodes move into the region in which 
the gradient of the solution 1 a, 1 and the curvature ( a,,/ are large. The nodes move 
slowly but smoothly through the wave as it moves toward the right boundary. The 
fixed node FFE program was then applied to the same initial-boundary value 
problem and the output was compared, using linear interpolation, to the output of the 
VFE program at t = 0.01212. The output of the FFE program with 25 1 grid points is 
in agreement with the output of the VFE program with 32 grid points for at least 
three digits except in the interval [8.08,8.16] which contains the front of the wave. 
Here, there is at most one digit in agreement. When the number of nodes in FFE is 
increased to 1001, the output is in agreement with the VFE output with 32 nodes for 
at least three digits except in a much smaller interval 18.11, 8.131 which also contains 
the front of the wave. Since the fixed node method appears to converge for this 
problem, the output of the VFE program appears to be accurate. In particular, the 
VFE program appears to achieve a much better resolution at the front of the wave. 

Since the distance between the nodes within the shock is as small as 0.001106 for 
the VFE program with 32 grid points, FFE with 1001 grid points is expected to 
achieve the same accuracy at the front of the wave as VFE. However, the fixed node 
program with 1001 nodes took 40 minutes of CPU time on the UNIVAC 1100 to 
integrate to t = 0.01212, and the variable node method with 32 nodes took 1.5 
minutes. Although the Gear-Hindmarsh parameter EPS, which controls the size of 
the time step, was set to lo-’ [9, 1 I] for both programs, the variable node method 
used a larger time step. To integrate to t = 0.01212, FFE with 1001 nodes used live 
times as many time steps as VFE, and once the wave front formed, VFE used a time 
step at least ten times larger. Hence, the variable node method is much more accurate 
in the front region, requires many fewer grid points and therefore much less computer 
memory, achieves a larger time step, and uses considerably less CPU time than the 
fixed node method. 

9. BURGERS'EQUATION 

The method was next applied to 

24, = - l/2(2?), 
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on the interval 0 < x < 1. This equation is of interest because it is a simple nonlinear 
hyperbolic equation with solutions that develop discontinuities or shocks. To 
integrate this equation numerically, the diffusion term (l/R)u,, is added to obtain 
Burgers’ equation, 

u, = - 1/2(u2), + (l/R)&,. 

Here, R is a real positive number. The solution of this equation will be continuous 
and will closely approximate the solution of the original equation. In fact, the larger 
R is made the better the approximation obtained. In addition, if the shock lies within 
the interval [x-,x+], the speed of the shock is approximately 

(4x-) + 4x+)P 

for large R ] 131 and the width of the shock is 0(1/R) [14]. Hence, the location of the 
shock can be used as a test for the accuracy of our method. Experiment has shown 
that finite difference and finite element methods become unstable when applied to 
Burgers’ equation unless several grid points lie within the shock. Consequently, if the 
shock width is small, the fixed node methods will require a large number of nodes. 
Since our method concentrates nodes only where they are needed, i.e., in the shock 
region, and places few nodes elsewhere, it uses many fewer nodes. The method has 
been applied to Burgers’ equation in conservation form [ 151 for three different 
problems. 

For the first problem, R = 103, the initial condition was 

if O<x<O.l 

if 0.1 GxgO.3 

and the Dirichlet boundary conditions were ~(0, t) = 1 and ~(1, t) = 0. Here 38 nodes 
were used. In Eqs. (2), the parameter E, was set to 1, s2 was set to 10e6, and B, and 
B, were set to 0.025. The Gear-Hindmarsh parameter EPS was set to IO-‘. 

A plot of the output of the VFE program is shown in Fig. 2. A shock wave quickly 
forms and moves to the right. As expected, nodes move into the shock as it forms and 
slowly move through the shock as it travels toward the right boundary. To measure 
the accuracy of the method, we assume that the location of the shock discontinuity is 
the point on the x-axis where the solution has value 0.5, i.e., the point x, where at 
time t 

24(x,, t) = 0.5. 

Since the shock wave travels at speed 0.5 and is initially located at 0.2, it should be 
at 0.7 at t = 1. Using linear interpolation on the output of VFE at t = 1, we find the 
location of the shock to be 0.69993. This problem is also a check on the size of the 
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FIG. 2. Solution of Burgers’ equation by VFE with R = lo’, ~(0, I) = 1, ~(1, I) = 0, 38 nodes, 
.sl = 1, .st = 10-6, and B, = B, = 0.025. 

time step. Once the shock has formed, it behaves like a traveling wave with speed c. 
Specifically, the solution u has the form 

# =f(x - ct) 

for some functionf(x) and satisfies the equation 

!A,=-CU,. 

For an explicit numerical method for this equation, the Courant-Friedrichs-Lewy 
condition on the time step At and space step Ax is 

At/min Ax < l/c. 

Here, min Ax is the minimum space step for any time t. Since our numerical method 
is implicit, At/min Ax should be larger than 2. Ratios many times larger than 2 can 
be obtained, depending on the accuracy required. Since the minimum space step was 
approximately 

min Ax = 0.0004 

a fixed node method would require nearly 1000 nodes to solve this problem with the 
same accuracy as the variable node method. 

In the second problem for Burgers’ equation, the same initial and boundary 
conditions as in the first problem were used, but R = 104. We used 48 nodes and set 
the parameters in Eqs. (2) and the Gear-Hindmarsh parameter EPS to the same 
values used in the previous problem. A plot of the output of the VFE program is 

581/51/S2 
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FIG. 3. Solution of Burgers’ equation by VFE with R = 104, ~(0, t) = 1, ~(1, f) = 0, 48 nodes, 
E, = 1, c2 = 10e6, and B, = B, = 0.025. 

shown in Fig. 3. The nodes move into the shock as it forms and slowly move through 
the shock as it travels toward the right boundary. As expected, the slope of the shock 
is ten times steeper than for R = lo3 because the width of the shock is 0( l/R). As for 
the accuracy of our method, the shock should be located at 0.7 at t = 1. Using 
linear interpolation on the output of VFE at t = 1, we find the location of the shock 
to be 0.69997. As a check on the size of the time step, ratios At/min Ax many times 
larger than 2 were obtained. Since the minimum space step within the shock was 
approximately 

min Ax = 0.37 x 10e4 

a fixed node method would require nearly 10,000 nodes to solve this problem with 
the same accuracy as the variable node method. 

In the third problem for Burgers’ equation, R = 103, the initial condition was 

24(x, 0) = sin(2nx) + 0.5 sin(nx) 

on the interval 0 <x < 1, the Dirichlet boundary conditions were ~(0, t) = 0 and 
~(1, t) = 0. This test problem was studied by K. Miller and R. Miller [ 1 ] and by 
Gelinas, Doss, and K. Miller [5]. The initial condition consists of two colliding 
waves, one moving to the right and the other moving to the left. A shock will form, 
will move to the right, and will die when it hits the right boundary point because of 
the Dirichlet boundary conditions. Here 57 nodes were used, and in Eqs. (2) the 
parameter E, was set to 5, s2 to 10p6, and B, and B, to 0.025. The Gear-Hindmarsh 
parameter EPS was set to 10-j. A plot of the output of the VFE program appears in 
Fig. 4. The nodes move into the shock as it forms, slowly move though the shock as 
it moves to the right, and slowly leave the shock as it dies on the right boundary. 
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FIG. 4. Solution of Burger’s equation by VFE with R = lo’, ~(0, t) = ~(1, t) = 0, 57 nodes, E, = 5, 
Ed = 10m6, and B, = B, = 0.025. 

10. THE QUENCH FRONT PROBLEM 

The method was next applied to a third test problem, the quench front problem, 
which has also been studied by Dendy, Schwartz, and Wendroff [ 161 and by K. 
Miller [2]. The problem consists of the heat equation with a discontinuous source 
function, specifically, 

ut = u,, -f(u) 
where 

f(u)= 1;” if O,<u <uu, 
if 24, < u. 

Here, A is positive and U, is a fixed given value. 
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The equation models the emergency cooling of a hot nuclear fuel rod by flooding 
from the bottom with cool water. Here, u is the temperature, x is the distance from 
the bottom of the rod, and the temperature of the water is zero. There will be little 
heat transfer at a point x on the rod if the temperature at that point is greater than a 
critical temperature uC, even if the rod at that point is immersed in water. That is, if 
the temperature at a point is greater then uC, the water is not in direct contact with 
the rod, but an insulating film of steam lies between the rod and the water. Once the 
temperature ZJ has fallen below uC, the water comes into direct contact with the rod 
and a large heat transfer coefftcient A reduces the temperature rapidly toward the 
water temperature of zero. A large gradient in the temperature develops at the point 
on the rod with the critical temperature u,. The result is a wave or quench front 
which moves up the rod. Since the fuel rod may be four meters long and the quench 
front is only several milimeters in width, a numerical method with fixed grid points is 
inadequate and some form of local mesh refinement is required. 

If the rod is assumed infinitely long, the solution of the equation for large t is a 
traveling wave [ 171 defined by 

u(x, t) = u(r) = 1 1 - (1 - u,) e-‘l, tI>,O 
u,ec~(‘-u3/u, 7 <GO 

(rx-Xx,-CL 

Here, x0 is the initial position of the wave and c is the speed of the wave. Since 
Dirichlet boundary conditions will not affect the solution as long as the wave is 
sufficiently far from the boundary points, this exact traveling wave solution can be 
used to check the accuracy of our method. 

The heat transfer coefficient A was set to 80,000, the critical temperature U, to 0.5, 
the initial condition to 

if O<x<O.l 

if 0.1 GxgO.3 

if 0.3 <x< 1 

and Dirichlet boundary conditions to ~(0, t) = 0 and ~(1, t) = 1. Here 38 nodes were 
used and in Eqs. (2) E, was set to 1, .sz to 10p6, and B, and B, to 0.025. The 
Gear-Hindmarsh parameter EPS was set to lo-‘. A plot of the output of the VFE 
program is shown in Fig. 5. The nodes move into the quench front as it forms and 
slowly move through the front as it moves toward the right boundary. 

To measure the accuracy of the method, we assume that the position of the front is 
a point on the x-axis where the solution has the value 0.5, i.e., the point x0 where at 
time t 

u(xo, t) = 0.5. 

Since the front travels at a speed of 200, it travels a distance of 0.1 in time 0.0005. 
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FIG. 5. Solution of the quench front problem by VFE with A = 80,000, u, = 0.5, ~(0, t) = 0, 
~(1, I) = 1, 38 nodes, a1 = 1, E* = 10m6, and B, =B, = 0.025. 

Adding 0.1 to the position of the front computed by linear interpolation from the 
output of VFE at t = 0.002 and comparing this to the position computed from the 
output of VFE at t = 0.0025, we found nearly three digits of agreement. Making the 
same comparison for t = 0.0025 and t = 0.003, we found the same accuracy. 

In addition, we compared the solution of VFE at each nodal point to the exact 
traveling wave solution. To do this we equated t to zero in the formula for the exact 
solution and let the initial position x0 of the wave be the location of the front 
computed by linear interpolation from the output of VFE. Computing the difference 
between the exact and numerical solutions at each node position between t = 0.002 
and t = 0.003, we found the largest error occurred at t = 0.003 at a node where the 
exact solution was 0.0 and the numerical solution was - 0.02. This node can be seen 
clearly in Fig. 5. 

Increasing the number of nodes to 75 while keeping the same values for the other 
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FIG. 6. Solution of the quench front problem by VFE with A = 80,000, u, = 0.5, ~(0, t) = 0, 
~(1, t) = 1, 75 nodes, E, = 1, E* = 10m6, and B, =B, = 0.025. 

parameters, we applied VFE to the same problem. A plot of the output is shown in 
Fig. 6. Comparing the numerical solution to the exact traveling wave solution 
between t = 0.002 and t = 0.003, we found the largest error at the nodal points to be 
four times smaller than the largest error with 38 nodes while the error in the location 
of the front at t = 0.0025 and t = 0.003 decreased by 25 percent. 

Since the solution of the equation is a plane traveling wave for large t, it must 
satisfy the equation 

24, = - cu x 

for large t where c is the speed of the wave. Since our numerical method is implicit, 
k/mink should be larger than l/200. Ratios many times larger than l/200 can be 
obtained, depending on the accuracy required. Since the minimum space step for 38 
nodes was approximately 

min Ax = 0.0006 

a fixed node method would require nearly 1000 nodes to solve this problem with the 
same accuracy as the variable node method. 

11. OTHER EQUATIONS FOR DISTRIBUTTNGTHE NODES 

Program VFE was modified to use Eqs. (2) with several new h functions different 
from (1) and then applied to the test problem for u1 = (u5),,. The simplest 
modification was 

J;: = \/??lf + E (Si+ 1 - Si) 
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FIG. 7. Position of nodes s,, s,+, and s,+? at the front of the wave in the solution to the equation 
4 = (UL 

for i = 1 ,..., N- 1. Here, the mi are the slopes for i= l,..., N- 1 of the piecewise 
linear approximation. Equations (2) with thesef;: terms work well on the test problem 
until the ratio (sI+ , - si)/(si+ Z - si+ 1) becomes too small (see Fig. 7). Then si jumps 
ahead of s,+ i, i.e., becomes larger than si+r. The remedy is to add a term to each J 
which will place nodes where the second space derivative of the solution is large. For 
instance, the term 

B, d/(mi - mi- I)* + ~2 (Si+ I- Si- 1) + B2 d(m,+ 1 - mi)* + ~2 (Si+ 2 - Si) 

added to each J;: for i = l,..., N - 1 would produce the original formula for& given in 
Eqs. (1). In these& functions (and in the ones that follow), B, is zero for i = 1 and B, 
is zero for i=N- 1. 

We also experimented with Eqs. (2) using 

for i= 1 ,..., N - 1. The ordinary differential equations generated by these equations 
appear to be unstable when applied to the test problem. Specifically, they appear to 
be unstable in regions where the slopes lrnil are small in value. These equations were 
used because they are easy to solve for the initial s, ,..., s,,,. Although many different 
formulas can be used for the J., we are restricted to those for which an efficient 
method is available for solving the nonlinear Eqs. (2) to obtain the initial sr,..., sN. 

Equations (2) were also tried with 

f;: = dc (Si+ 1 - Si) 

+Bl \/((mi-mi-1)/(Si+l-Si-1))2 +&2 (si+l-si-l) 

+J32 d/((mi+l -mi)/(si+z -Si>>’ +&2 (Si+2 -Si> 
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for i = 1 ,..., N - 1. When these equations were applied to the test problem, it was 
found that for the values of B, and B, used the nodes at the shock front did not move 
smoothly into the shock. Consequently, the time step was unacceptably small. 

12. CONCLUSION 

The new method presented in this paper consists of a modification of the standard 
finite element method for initial-boundary value problems. It utilizes the approx- 
imation power of piecewise polynomial functions better than a fixed-node finite 
element method because it distributes the grid points in a nonuniform way to suit the 
peculiarities of the solution at each instant of time. The criteria for placement of the 
nodes use the gradient and curvature of the approximating piecewise polynomial itself 
rather than physical properties which vary from problem to problem. These criteria 
have been formulated as a system of algebraic Eqs. (2). The derivation of the method 
is completed by converting the algebraic Eqs. (2) to ordinary differential equations 
and adding them to the equations of the standard finite element method to form a 
simultaneous system. The Gear-Hindmarsh method for stiff equations is used to 
solve the system. 

The method has been implemented in a program VFE which has the exceptional 
feature of a variable space step as well as a variable time step. Solution of Eqs. (2) 
for the initial values of the nodes s I ,..., sN is difficult, but a fast numerical method for 
solving them has been developed and implemented in the program GIV. When the 
program VFE was applied to the nonlinear parabolic equation u, = (u~)~~, to 
Burgers’ equation, and to the equation of the quench front problem, the new method, 
as expected, was much more efficient than a standard finite element method (in which 
the grid points are fixed) with respect to the number of grid points used, computer 
storage, size of the time step, and CPU time. Numerical tests on these equations 
demonstrated that the method is very accurate and stable. 

Finally, and most importantly, the new method can be extended in the obvious 
ways to systems of partial differential equations in one dimension such as the gas 
dynamics equations [ 18, 191 and to equations in two dimensions [ 191. 

APPENDIX I 

In this appendix equations &, = O,..., & = 0 are presented. They are derived by 
differentiating the algebraic Eqs. (2) with respect to time t with f, ,..., f,- , defined by 
(1). The coefficients B, and B, are replaced by a single constant B. The following 
notation is used: 

Asi = si+ , - si 

Dl = mi+ 1Csi+2 - si+l>/dZZT 

D,=dG 

D, = -q(s,+, - si)/dK 
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0.,=-d- 

D5 = B(mi+ 2 - mi+ 1 )(Si+3-Si+,)/~/(mi+2-mi+1>2 +&2 

De=Bd/(mi+z-mm,+,)’ +EZ 

D, = -B(mi - mi-l)(Si+ 1 - si- ,)/\/(mi - mid 1)’ + ~2 

D, = -B d(mi - m,- 1)2 + c2, 

The variables D, and D, vanish in g2 = 0 and D, and D, vanish in g,,- I = 0. The 
equations for i = 1 and i = N are 

g, = s’, = 0 

and 
g,=s,=o. 

The equations for i = l,..., N - 2 are 

-ii+, =Lij-l DT/ASi- 1 + di(-Dl/ASi-l- (D, + D,)/ASi) 

+ hi+ I((D~ + D,)/ASi + (D, - D,)/ASi+ 1) 

+ di+z((Dl -D,)/Asi+, -D.Y/‘s~+z) + bi+j(D5/ASi+z) 

+ ii-l(-D,mi-,/Asi-, -Dg) 

+ s’i((D3 +D7)mi/As,-Dd +D,mi-,/A~i-,) 

+ ii+ l(-(Dj + 07) mi/Asi + (01 - 05) mi+ ,/ASi+ 1 

-D,+D,-D,+D,) 

+ s’i+ z((-Dl + 0s) mi+llAsi+, +Dsmi+z/Asi+z +Dz) 

+ di+3(-Dsmi+z/ASi+z +De) 

= 0. 

APPENDIX II 

This appendix presents the mass matrix A(y) for the system of ordinary differential 
equations of the method 

A(~ = G(Y). 

If there are just eight nodes, 

Here the x’s represent non-zero entries from the equations 2, = O,..., 2, = 0. Also, 
A(2,2) =A(16, 16) = 1, because s’, = i,,,= 0, and A(l, 1) =A(15,15) = 1 because a 
Dirichlet boundary condition is assumed. The mass matrix A(y) is 
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APPENDIX III 

This appendix describes a method for solving the nonlinear Eqs. (2), 
g, = 0 ,..., g, = 0 with fi ,..., fN-i defined by (1). We assume there is a continuous 
piecewise linear approximation w to the initial function u(x, 0) with &-norm) 

II 4x9 0) - w(xll* < E 

for a specified E and for a minimal number of nodes x,,..., x,. We compute a 
continuous piecewise linear interpolation of v with nodal points which satisfy the 
algebraic Eqs. (2). Let p ,,..., pM-i be the slopes of II/ in intervals [xi, x2],..., 
[xMM-i, xM], respectively; let s; ,..., s& be the nodes of the piecewise linear inter- 
polation of w. The interpolation will have the form Cy=, w(sl) ai with slopes 

mi = (Vtsf+ 1) - W(s:>>/(sf+ 1 - Sf) 

for i= 1 ,..., N - 1. Although we have no convergence proof for the method, it has 
converged in all our tests. 

The method, consisting of seven steps, solves Eqs. (2) by solving Eqs. (1) with an 
iterative bisection method on the second node sz,(“) where n is the iteration number. 
For any n,s,,,=x,. The following rule is used in the method to simplify Eqs. (1): 

Rule. Each interval [xj, xj+ ,] for j = l,..., M- 1 must contain at least three 
nodes s i,(nj, si+ l,(nj, s~+~,(~) for any iteration n on s*,(~). Also, in each iteration n on 
S 2,(nj, Eqs. (1) are simplified by substituting values from the previous iteration n - 1 
for some of the unknowns in the B, terms of the equations. In iteration n = 1, B, is 
assumed to be zero. 

On the first iteration, IZ = 1, the seven steps take the following form. In Step 1, the 
second node s2,(,, is chosen in the interval [x, , xZ] and the parameter B, in Eqs. (1) 
is assumed to be zero. In Step 2, a value for the constant in Eqs. (1) is computed, 
which will be called C. In Steps 3 through 6, nodes s3,(,),..., So, are computed, 
which satisfy Eqs. (1) approximately such that 

Xl < 82,(l) < S3,(1) < *** < SN,(II. 

Hence, these nodes satisfy Eqs. (2) approximately except possibly g, = 0 because 
s,,(,) may be somewhat larger than x,. The number of nodes N is an unknown which 
is computed by the method itself, being simply the index of the first node s,,(,) 
computed in Step 5 such that s,,,-,,(i) < xM< sN,(,). In Step 7, s*.(2) defined as 
(x1 + s2,wP is computed for the next iteration 12 = 2. 

On the second and subsequent iterations, n > 2, on So,, B, is assumed equal to 
B, . In Steps 2 through 6, the nodes So, ,..., So, are computed by using s2,(,,) deter- 
mined in Step 7 of the previous iteration and by substituting values s,,(,-,) ,..., sN,(,- ,) 
from the previous iteration for some of the unknowns in the B, terms of Eqs. (1). 
Substitution of values from the previous iteration n - 1 are needed because B, is non- 
zero. Also, in Step 2 a new value C for the constant in Eqs. (1) is computed. The 
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nodes s ,,(,,, ,..., s,,(,, satisfy Eqs. (1) approximately and, therefore, satisfy Eqs. (2) 
approximately except possibly g,,, = 0. In Step 7, sz,(,,+ ,, is computed for the next 
iteration n + 1 by a bisection argument on the interval [x,, s2,(,,]. That is, the value 
for the last node sN,(,, computed by Steps 2 through 6 is assumed to be an increasing 
function of s~,(~, . It is also assumed that if a value for s~,(~, is chosen close enough to 
x1, then G,(~) will be strictly less than x,. Hence, if sN:(“, is larger than xM, then 
s~,(~+,, should be smaller than s~,(~,. On the other hand, if sN,(,,, is smaller than x,~, 
then s~,(~+,) should be larger than s~,(~,. Generally, Step 7 will need to be repeated 
only a few times because small perturbations in s~,(~, create large perturbations in 
sN,(,,. As a consequence, the method is very fast. 

As the number of iterations n goes to infinity, sN,(,,, apparantly converges to x, 
and s ,,(,,, ,..., sN,(,,) satisfy Eqs. (2) approximately including g, = 0. That is, there is 
apparently a solution with N nodes si ,..., N s’ which satisfies Eqs. (2) including g,V = 0 
such that s; lies in the interval [x,, s2,,,,]; as n goes to infinity, s,,~,,,,..., sh,(,,, 
apparently converges to s; ,..., sh. 

We will now describe the seven steps of the method, using a square Cl to mark the 
end of each step. 

Step 1. For the first iteration, n = 1, on s~,,~,, choose s2,(,, between x, and x2 
and let B, = 0 in Eqs. (1). 0 

Step 2. Compute C where C =f (s 1 l,fn),Sz,(n),S3,(n-l) ). (A value for s~,(~-,, is 
not needed for n = 1 because B, = 0.) 0 

Step 3. Assuming m2 = m3 = ,u, , solve f2(x,, s2(,,, , s3, s~,(~- ,,) = C for s3. (This 
equation can be solved directly for s3, A value for s,,(,- ,, is not needed for n = 1 
because B, = 0.) If IZ = 1 and s3 > x2 (the Rule is not satisfied), then replace sz,(,, be 
(s2,,,,)/2 and go back to Step 2. Otherwise, let the solution s3 of the equation by 
q,(,). Assuming m3 = m4 =P,, solve f3(~2,cnj, So,, s,, s~,(~-,)) = C for s,. If 
sq < x2, let s,,(,, = s,. Solve for s~,(~,,..., sK,(,,, in the same way such that 
ss,w) < ... < sK,(*, <x2 < sK+,, where sK+, is the solution to 

fK(~K-ll,~n)~~K,~n~~~K+1~~K+2,~“-l~)=~(~K+1-~K,~n~) 

+ B, 6 (SK+, - SK-,,(~)) 

+ B2 VT (SK,2,0-,) - SK,d 

=c (A3-1) 

under the condition that mK = m,, , = ,u, . 0 

Since I// is a continuous piecewise linear approximation of the initial function 
u(x, 0) using a minimal number of nodes x, ,..., x,, slope pi does not equal ,ui+, for 
i= 1 ,..., M - 2. Hence, w cannot have both mK = ~1, and x2 < s,, , < x,. Concluding 
that s,, , must be greater than x2 and using the Rule, we make the assumption that 

x,~sK-2~sK-,~sK~x2<sK+,~~K+2<~K+3~~3 (A3-2) 
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holds. Consequently, we have mKe2 = mKpl =pi and mK+i =mK+2 =,uu,. The graph 
of w near its node x2 is shown in Fig. 8 with the relative positions for s,-, , s,, x2, 
s K+I, and sK+2 indicated. Looking at Fig. 8, we see that there must be a line 
connecting I&,) and I@,+,) with slope mK such that 

and such that s,, sK+ , , and sK+ 2 solve equations f, _ 1 = C, fK = C, and fK + , = C. 
These equations have the form 

f,-, = dz (SK -SK-l.(n)) + B, 62 (SK -sK-2d 

+B2 CUI-mK)2+~2 (s~+~--~-~,~,~)=C (A3-3a) 

fK=hGK(sK+1 --s,)+B, dol, +$A2 +c2 (SK,, -SK-I,(“)) 

+ B2 d/cu, - mK12 + c2 (Q+~ - sd = C (A3-3b) 

fK+1=dz=&K+2 - sK+ J + 4 d/cu, - mK12 + c2 hi2 - sK) 

+B,~(sK+~,(~-~)-sK+I)=C. (A3-3c) 

(A value for s,+~,(,-,) is not needed for n = 1 because B, = 0.) Hence, we must solve 
Eqs. (A3-3) simultaneously for sK, s,, r, and s,, 2. 

Equations (A3-3), however, are linear in s,, sK+ , , and sK+ 2 if mK is held constant; 
the equations are presented in Appendix IV in matrix form. Consequently, if mK is 
replaced by a specific value in these equations, we can solve them uniquely for sK, 
S Ktl, and sK+2* Since m, lies in the interval [min(,u, ,p2), max@, ,,u2)], it can be 
represented as 

‘K-1 ‘K x2 ‘K+l ‘Kt2 

FIG. 8. Graph of w near its nodal point x2 with nodes s,_, , sK, sK+, , and sx+* which satisfy 
equations f, _, = C, f, = C, and f,, 1 = C. 
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Hence, we can solve Eqs. (A3-3) for sK, s,, i , and sK + Z by adding a new unknown, 
mK, and a new equation, (A3-4d); that is, we solve 

(A3-4a) 

(A3-4b) 

(A3-4c) 

(A3-4d) 

The following step, Step 4, describes an iterative algorithm for solving Eqs. (A3-4). 
For each iteration p, the value of the iterate m$" is computed first. With this value 
substituted for mK in Eqs. (A3-3), the iterates SK@), sg: i , SF: 2 are computed. For the 
first iteration, p = 1, my' = (u, + p2)/2. The next iterate of mK is determined by 
Eq. (A3-4d); that is, rn$'+l) is determined by whether #,(s$“, $1 i, $L2) is greater 
than or less than m$“. When Irn$” - &(s$“, $4 i, sgi2)1 is small enough for some 
iteration p, we let s$‘), s$‘i,, s$i, be sK,(“), sK+i,(,,), s~+~,(,,). However, for some 
iteration p an iterate 112, @) of the algorithm may produce a solution s$‘), SE:, , and 
s$‘i2 of Eqs. (A3-3) which is not consistent with the assumption (A3-2) (Cases b and 
c in Step 4). In addition, the algorithm may not converge because the assumption 
(A3-2) itself may not be valid. Further explanation of the algorithm is postponed 
until all the steps of the main method have been described. 

Step 4. Determine s,,(,,), s,, l,(nj, and s~+~,(~) by solving the four Eqs. (A3-4) 
by iterating on rng’ , s$‘) , SF:, , and s$‘L 2 where p is the iteration number. Let 
zi = min(,ui,p,) and z2 = max@,,p2). Since z1 < m, < z2, the first guess for mK is 
done. If it is, 

let sg), ~21 i, and sg:, be sK,(,i, sK+ i,(nj, and s~+~,(“), respectively. If not, another 
iteration, p = 2, is required. Start the new iteration, p = 2, by updating z, and z2 in 
order to compute mK . (2) The updating of zi and z2 involves three cases: in Case a the 
solution St’, SF:, , sg: 2 is consistent with the assumption (A3-2), and in Cases b and 
c it is not. The three cases are: 

a. sg’ Qx, < sf:,. If rnt’ - $K(sil), sg: i, sgi2) is negative, let zi = rni’. 
Otherwise, z2 = mg’. 

b. s$ii <x2. If zi equals p,, let z2 = rng’. Otherwise, zi = rng’. 

C. x2 < s$). If zi equals p,, let zi = rng’. Otherwise, z2 = my’. 

Now compute rnz’, i.e., rng’ = (zl + z2)/2. Use rng) to solve for (sg) , sgi,, sg: 2) 
and then determine whether (my’ - Q)K(s$), SF: i, sg:,)I is small enough. If it is, let 
SF), sp:i, and sgi2 be So,, So+,,, and s~+~,(“,, respectively. If not, compute rng’ 
and repeat the process. 

If $1 i comes very close to x2 with respect to some tolerance or m$” comes very 
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close to ,u i and ] rng) - &(s~), 3:: i , s$‘i 2 ] is not small enough after several iterations 
p (i.e., the algorithm of this step is not converging), then restore So, to its value 
obtained in Step 3 and let s,+,,(,r = (ox, +x2)/2. Solve fK = C, f,, I = C, and 
.fi+* = C for s~+~,(,)~ s~+~,(~), and s~+~,oo- 0 

Step 5. Solve directly as in Step 3 for s~+~,(,,), s~+~,(~),...,s~+~,,(~), ~~+~,+i,(~) 
where s~+~~+~,(~) > x3- Solve for (sK+Kt,cn)9 sK+Kftl,(nf9 sKtKt+2,d as in 
Step 4. 0 

Step 6. Repeat Step 5 until N nodes x, < s2,(,,) < ..a < sN,(,,) are computed, using 
Steps 3 and 4 with x2, x3, pi, and ,L~ replaced by xi, xi+, , Iui-, , and ,u~, respectively, 
for j = 3,..., it4 - 1. The number N is the index of the first node computed in Step 5 in 
the first iteration, n = 1, such that s,,,-~,(~) < x, ( sN,(ij. (It is assumed that Y(X) is 
defined for x greater than xy with slope equal to &,-, . If the iteration n > 2, s,,,+(,) 
may be strictly less than x,+,.) 0 

The last step, Step 7, determines the second node s~,(~+ i) for the next iteration 
n + 1, using the bisection argument, previously described, on the interval [x1, s,,(i)]. 

Step 7. If n = 1, let XL =x1, XR = s2,(ij, and So, = (s,,(,, +x,)/2. Using So, 
and letting B, = B,, repeat Steps 2 through 6 to obtain So,. 

If n > 2 and So, is close enough to x,, stop; the solution to Eqs. (2) is 
S I,(n)Y-T S&v,(“)* If SN,W is not close enough, let s,,(,+,) = (So, + XR)/2 and 
XL = So,,,,) if sN,(,,) < x,, and let ~,,+i) = @2,(X) + XL)/2 and XR = So, if 
s N,(n, > x,. Repeat Steps 2 through 6 to obtain sNqcnt i). Cl 

We will now explain further the algorithm used in Step 4 to solve Eqs. (A3-3). The 
algorithm solves the three Eqs. (A3-3) for So,, s,, l,(nj, and .sK12,(,,) by solving the 
four Eqs. (A3-4) for sK, s, t i, sK t 2, and m, by iterating on sg’, s$‘i i, ~$1 z, and m$‘) 
where p is the iteration number. Choosing for the first guess of mK, 
rn:’ = (2, + z2)/2, we compute sg), sjyll i , and sFi2, If these values are consistent 
with the assumption (A3-2) of the algorithm, i.e., sf’ <x, < st:, (Case a in the 
updating of z1 and z2), then we use them to evaluate #K. If 0:’ is greater than mg), 
we must have chosen my’ too small; consequently, we let z, = rnjj’. On the other 
hand, if 4;) is less than mi’, then we chose rng’ too large and let z2 = m:). 

If SF: i is less than x2 (Case b in the updating of zi and z2), however, then the 
solution SF), sgi,, ~2: 2 of Eqs. (A3-3) is not consistent with the assumption (A3-2) 
of the algorithm. Values for mK must be found which will force the value of s~+~ to 
be greater than x2. We note that the value of sK+ i computed in Step 3 under the 
condition that mK = mK+ I = pi was strictly greater than x2. By comparing Eq. (A3- 1) 
with (A3-3b), we conclude that sK+i will apparently be greater than x2 if ]p I - m, ] is 
made small enough. Hence, if zi equals ~1,) m, should be smaller to make ]P, - m, 1 
smaller; consequently, we make z2 = my’. If z2 equals pi, we need a larger mK to 
make (P, - m,] smaller and, therefore, let z1 = m:‘. If s$) is greater than x2 (Case c 
in the updating of z, and z2), then ]pl - mK ] is made larger, forcing sKt, and, 
therefore, sK to be smaller. 
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Finally, we will discuss the case in Step 4 in which s$‘L, is very close to x2 or m,“’ 
is very close to ,uu, even though $$” is not close to nt$‘) for some iteration p; i.e., the 
algorithm in Step 4 is not converging. It apparently does not converge because the 
assumption of the algorithm in Step 4 that sK+ i is greater than x, is invalid. To see 
why this bad assumption was made, we need to examine Step 3. In this step, sK+ I was 
found to be greater than x2 by solvingf, = C with the assumption that mK and mK + 1 
were equal to ,u,. This assumption gave the B, term in f, = C the form 

That the expression under the square root sign is as small as it can be apparently 
made s,, i greater thanx,. 

To correct the bad assumption made in Step 4, we assume that s,, , must be less 
than x2 and s~+~ greater. To see why sK+ , can be less than x2, we need to examine 
the equation f, = C. With this new assumption the equation f, = C will be the same 
as it was in Step 3 except for the B, term which will now have the form 

B2 d/(mK+l -P1Y + &2 (SK+2 -SK> 

where mK+ 1 lies between min(.u,,~u,) and max@,,p,). That the new expression under 
the square root sign is larger apparently allows sK + I to be less than x, . Hence, we do 
not have to solve for sK,(,) but can restart Step 4 to solve fK = C, f,, , = C, and 
fK+*= C for s~+~,(~)~ G+~,~~), and %+3,(n)' 

APPENDIX IV 

This appendix presents the equations f,- 1 = C, fK = C, and fK+ 1 = C for the 
situation shown in Fig. 8 where mK is held constant. Here mK is defined by 

mK = vY(sK+l) - W(SK) . 
‘X+1 -‘K 

Coefficients B, and B, in the equations are set equal to a single constant B. Also, p, 
and ,u, are the slopes of w in the intervals [xi, x2] and [x,, x1], respectively. 

W)=B &, 

qq = &yTT, 

0(3)=B d/cul -mK)' +E2, 

D(4)= ~z-xl, 

D(5)=B ~/O1,-mK)* +E*, 

D(6)= d=. 
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The equations represented in matrix form 

are 

D(l) + W2) D(3) 0 

-D(4) - D(5) D(3) + D(4) ‘D(5) 

-D(5) -D(l) -D(6) D(5) +D(6) I -D(5) 1 -D(l)-D(6) ( D(5)+D(6) 1 Isk+2( ( --D(l)sK+,+C 1 
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